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Abstract Flag graphs have been used in the past for describing maps on closed
surfaces. In this paper we use them for the first time in mathematical chemistry
for describing benzenoids and some other similar structures. Examples include cata-
condensed and pericondensed benzenoids. Several theorems are included. Symmetries
of benzenoid systems, flag graphs, and symmetry type graphs are briefly discussed.
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1 Introduction

Flag graphs are a useful tool in topological graph theory and related fields. For
instance, they can be used for description of maps, i.e. graphs embedded in closed
surfaces with faces being open 2-cells, i.e. homeomorphic to discs. In this paper we
use this concept with slight modifications in order to describe certain molecules that
have “faces”, i.e. special rings that can be found, for instance, in fullerenes or benze-
noid systems. Such systems correspond to maps on surfaces with boundary.

2 Flag graphs or flag systems

For a map on a surface, we obtain flags from baricentric subdivison of the map. Each
k-sided face or ring in a system is therefore subdivided into 2k right triangles. Each
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flag can thus be viewed as a right triangle, with its three vertices corresponding to
the vertex-, center of an edge, and center of a face of the original map. In a map of
a closed surface, each flag triangle is adjacent to three triangles and the adjacencies
can be viewed as reflections with respect to the three sides of the flag triangle. On a
closed surface, there are four flags along each edge, hence the total number of flags is
four times the number of edges [1–6].

Example 2.1 Let us take for example the maps of a four-sided pyramid with the ver-
tices of the square base denoted by abcd and the apex denoted by e. The vertex set is
V = {a,b,c,d,e}, the edges are E = {ab,bc,cd,da,ea,eb,ec,ed}, and the five faces are F
= {abe,bce,cde,dae,abcd}. There are 4|E| = 4 × 8 = 32 flags in this system.

If we take the dual of the baricentric subdivision, the flag triangles are represented
as flag vertices. Each flag has three semi-edges, indicated by three different colors: 0,
1 and 2. Assigning numbers as colors has a strong mnemonic advantage over arbitrary
colors. Namely, color 0 means that that adjacency comes with the respect to the side
edge-face of the flag triangle. In this case we move from a flag triangle to the adjacent
triangle by keeping the edge and face but changing the vertex (dimension 0). In a
similar way the semi-edges of colors 1 and 2 can be described. In our paper we denote
0 by green, 1 by red and 2 by blue. In a closed map the semi-edges of adjacent flags
of the same color are glued into an edge in such a way that no pendant edges remain.

3 Benzenoid systems

We think of benzenoid systems (or benzenoids for brevity; π -electrons are ignored)
not only as graphs composed of vertices and edges, but also consider rings as faces.
Hence such systems can be described by flag graphs, too. However, in benzenoid
systems, the situation is different in that flags lying at the peripheral edges of rings
have no neighbours, and some blue semi-edges (dimension 2) remain pendant. Along
each C–C bond (black lines) we get a green edge (dimension 0) and along each angle
spanned by two incident edges we get a red edge (dimension 1).

In the dual approach, where the flags are vertices and not triangles, we may describe
a flag system in a purely combinatorial way.

We start with a finite collection of flags � and three involutions s0, s1, s2 defined
on �. There are two axioms:

a) The group < s0, s1, s2 > acts transitively on �.
b) s0s2 = s2s0

The first axiom ensures that the flag system (�; s0, s1, s2) is connected. The second
axiom is related to the edges of the structure described by the flag system. We may
view a flag system to be the flag graph with a given 3-edge-coloring. A flag system
is described by three involutions. Since each involution is a permutation, it can be
described in a tabular form or as product of disjoint cycles. In the latter case each
cycle is of length 2 or 1. Cycles of length 2 correspond to edges, while cycles of length
1 correspond to pendant edges.
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Fig. 1 The flag graph of benzene (colors) superimposed on benzene (black) (color figure online)
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Fig. 2 Flag graph of naphthalene (colors) superimposed on naphthalene (black) (color figure online)

Example 3.1 Let us consider the two smallest benzenoids: benezene and naphthalene,
represented by their hydrogen-depleted graphs, and ignoring the π -electrons.

Here is a possible description of benzene by a flag system. For benzene we have
12 flags, as shown in Fig. 1.

Instead of using table or edge-colored graph, we may use the product of cycles to
represent the three involutions:

s0 = (1 2)(3 4)(5 6)(7 8)(9 10)(11 12)

s1 = (2 3)(4 5)(6 7)(8 9)(10 11)(12 1)

s2 = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)

For naphthalene we have 24 flags, as shown in Fig. 2.
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Anthracene  

Fig. 3 Flag graph of anthracene

Example 3.2 For the isomeric catafusenes anthracene and phenanthrene we have 36
flags in each case, as shown in Figs. 3 and 4, respectively.

Example 3.3 A last example is for the flag graph of a perifusene, namely pyrene, with
48 flags, as seen in Fig. 5.

Each flag system can be described as a trivalent pre-graph. The vertices are the
flags and the edges are involutions. Different involutions correspond to different col-
ors: s0, s1, s2. Pendant edges in the flag graph for involution s2 represent boundary
vertices (and edges).

4 Some properties of flag graphs

Here we list some properties of flag graphs.

1. Orbits of < s0, s1 > correspond to faces (or rings) of the original.
2. Orbits of < s0, s2 > correspond to edges (or C–C bonds) of the original, and
3. Orbits of < s1, s2 > correspond to vertices (or carbon atoms) of the original.
4. We easily distinguish between interior edges (shared by two rings) and boundary

edges. Namely, the edge is a boundary edge if and only if the 0–2 (alias green-
blue) component in the flag graph is a path (with blue pendant edges at both
ends.)
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Fig. 4 Flag graph of phenanthrene

5. In a similar way we may distinguish between an interior and a boundary vertex,
except that, for the latter, we consider 1–2 (red-blue) components.

6. In a similar way we may distinguish between a face with open boundary from
the usual face that is bounded by a cycle in graph. Such ”semi-faces“ appear, for
instance in the process of factoring a system with respect to its symmetry (See,
for instance Figs. 6, 7).

Theorem 4.1 A flag system (�; s0, s1, s2) describes a catacondensed system if and
only if all vertices are boundary vertices, i.e. if and only if each component < s1, s2 >

is a path.

We illustrate these properties by a system composed of a hexagon and a square
representing the carbon skeleton of benzocyclobutadiene.
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Fig. 5 Flag graph of pyrene

5 The symmetry type graph

As for flag graphs of maps we may also define more general type graphs.
Let (�; s0, s1, s2) be a flag system. A permutation f: � → � that preserves all col-

ors, i.e.: fs0 = s0f, fs1 = s1f, fs2 = s2f is called an automorphism of F (that preserves
edge-colors). Automorhpisms form a group Aut �. The quotient � /Aut � = T(�)

is the symmetry type graph of �.

Theorem 5.1 If a benzene system has m automorphisms and n flags, then m must
divide n and the number of vertices in its symmetry type graph is n/m.

Example 3.1, revisited:
Now the flags are labeled by lower-case letters and each permutation is described

by a product of disjoint cycles. For instance, the type graph of benzene has only one
vertex.
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Fig. 6 Flag graph for benzocyclobutadiene

T(benzene):

s0 = (a)

s1 = (a)

s2 = (a)

The symmetry type graph of the naphthalene has 6 vertices. Vertices of the type graph
correspond to flag orbits under the group of automorphisms.

T(naphthalene):

s0 = (a b) (c d) (e f)

s1 = (a) (b c) (d e) (f)

s2 = (a) (b) (c) (d) (e) (f)

In the same way we could describe symmetry type graphs of other examples.
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Fig. 7 Results of deleting various types of edges in the flag graph of naphthalene

6 Symmetry of benzenoid systems, flag graphs, and symmetry type graphs

The symmetry of graphene, the infinite hexagonal tiling of the Euclidean plane, has a
well-known group of isometries that can be described via p6m, one of the 17 wallpaper
groups. For finite benzenoids, each symmetry group must fix either a vertex, or center
of an edge or center of a face. If a vertex is fixed, the largest group is S3 = D3 on
6 elements that permutes the set of neighbors of a vertex. If the center of an edge is
fixed, the largest group is Z2 × Z2. If the center of a face is fixed, the largest group is
D6, the dihedral group of order 12 (Figs. 8, 9, 10).

In particular this gives the following result.

Theorem 6.1 Let B be a simply connected benzenoid system with non-trivial auto-
morphism group of order m. Then exactly one of the following three cases can occur:

Its automorphism group is a subgroup of a dihedral group D6 and

0. fixes a vertex (t0) and m = 2, 3, or 6 (a subgroup of D3)

1. a center of an edge (t1) and m = 2 or 4, (a subgroup of Z2 × Z2) or
2. a center of a ring (t2) and m = 2, 3, 4, 6, or 12 (a subgroup of D6).
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Fig. 8 (t0) Vertex-centered
symmetry. The dihedral group
D3 of order 6 and the lattice of
its subgroups. There are 6
subgroups in total, however,
only 2 of them are proper and
pairwise non-isomorphic. These
are all possible symmetries of a
benzenoid system that fix a
vertex

D3 = S3

Z3 = A3

. .

Z2 Z2 Z2

. .

I

Fig. 9 (t1) Edge-centered
symmetry. The Klein four-group
Z2 × Z2 of order 4 and the
lattice of its subgroups. There
are 5 subgroups in total,
however, only 1 of them is
proper (up to isomorphism).
These are all possible
symmetries of a benzenoid
system that fix a vertex

D3 = S3

. .

Z2 Z2 Z2

. .

I

Fig. 10 (t2) Face-centred
symmetry. The dihedral group
D6 of order 12 and the lattice of
its subgroups. There are 16
subgroups in total, however,
only 5 of them are proper and
pairwise non-isomorphic. These
are all possible symmetries of a
benzenoid system that fix a
center of a benzene ring

Z2

D6

D3 Z2 Z2 Z6 Z2 Z2 D3Z2 Z2

Z2 Z2 Z2 Z2 Z2 Z2
Z3

Note that the theorem holds also for benzenoid systems that are not simply connected
(have holes) but in this case the center of symmetry may reside in such a hole. We will
explore this phenomenon in a sequel paper.

Example 6.1 Triphenylene and coronene, shown in Fig. 11.
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Fig. 11 Both triphenylene and coronene are of type (t2). The former has a symmetry group D3 while
the latter has symmetry group D6. T(triphenylene) has (4 × 3 + 2 × 18)/6 = 8 vertices (= flag orbits),
T(coronene) has (4 × 12 + 2 × 18)/12 = 7 vertices (= flag orbits)

Fig. 12 Both graphs have (t0) symmetry and the group is D3

Fig. 13 Both graphs have (t1)
symmetry and the group is
Z2 × Z2. The delocalized
π -electrons may be ignored

Example 6.2 Hexahydrotriquinacene (CH)10 or acepentalene C10H6, and perinaph-
thenyl free radical C13H9 (Fig. 12).

Example 6.3 Naphthtalene and tetracene have type (t1) (Fig. 13).

7 Conclusion

In this paper we developed the basics of the theory of flag graphs and symmetry type
graphs for benzenoid systems. When considering groups, we restricted our attention to
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the abstract groups and not to their geometric actions as point groups. In our sense only
the following groups may appear as symmetry groups of benzenoids: D6, D3,Z6, Z2 ×
Z2,Z3, Z2 and I, where I denotes the trivial group. Note that they are all subgroups of
the D6.
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